A 69-year-old female patient was referred from the Neurology Department with abnormal findings on magnetic resonance angiography (MRA) images. Upon neurological examination, no symptoms of tinnitus, vomiting, or altered mental state were noted, and her consciousness was alert with only mildly impaired cognitive function. On radiological examination, T2-weighted imaging revealed enlarged pial vessels in the subarachnoid space (
Fig. 1A), and MRA revealed arteriovenous shunting into the isolated sigmoid sinus and cortical veins (
Fig. 1B). Catheter digital subtraction angiography (DSA) revealed a right-sided DAVF involving the sigmoid sinus, with multiple instances of cortical vein reflux fed by the transosseous branches and posterior meningeal branches of the occipital artery and the parietal branch of the middle meningeal artery (
Fig. 2A,
2B). DSA was performed to assess the extent of retrograde cortical vein reflux and venous drainage (
Fig. 2C,
2D). The ipsilateral transverse sinus and jugular vein were not visualized, indicating a pure isolated sigmoid sinus DAVF with multiple instances of cortical vein reflux, classified as Borden type III or Cognard type III. No abnormal shunting was observed in any of the other arteries. Because the lesion was inaccessible via a conventional transfemoral transvenous approach, transvenous embolization via direct cannulation of the sigmoid sinus was planned for complete obliteration of the fistula. In the operating room, under general anaesthesia, a small craniectomy was performed using preoperative CT angiography images and the Stryker neuronavigation system (Stryker Instruments, Kalamazoo, MI, USA) (
Fig. 3A). The sigmoid sinus was exposed within the small craniectomy, and bleeding was controlled using bone wax and fibrinogen/thrombin-based collagen fleece (TachoComb
Ⓡ, CSL Behring, Tokyo, Japan) (
Fig. 3B). The patient was then transferred to the angio suite, and a 5-French sheath was placed in the left femoral artery. Using visual surveillance and roadmap guidance, the right sigmoid sinus was punctured using a micropuncture needle, and a micropuncture sheath was sequentially placed under fluoroscopic guidance. A microcatheter (Headway-17
TM, MicroVention, Tustin, CA, USA) was positioned appropriately for embolization at the fistula point (
Fig. 4). Subsequently, the sinus was embolized using multiple detachable packing coils. The microcatheter was carefully retracted while densely packing the sigmoid sinus with coils from the superior to inferior regions. Although complete embolization with coils alone was initially anticipated, a post-embolization angiogram following the placement of 10 detachable packing coils of various sizes (MicroVention, Tustin, CA, USA) revealed a reduction in the flow limited to the sinus and fistula areas. To achieve complete obliteration of the fistula, glue embolization was performed with Onyx
Ⓡ (ev3, Irvine, CA, USA) (
Fig. 5). The patient was discharged without complications.