A 69-year-old woman visited our hospital with a vasovagal syncope. Brain computed tomography (CT) and brain computed tomography angiography (CTA) were performed for work up and two unruptured aneurysms on the right middle cerebral artery (MCA), unruptured aneurysms on the right paraclinoid carotid artery and the left posterior communicating artery (pcom), and a left MCA bifurcation were incidentally found (
Fig. 1). On conventional angiogram, the sizes of the aneurysms were small but the right MCA and left pcom aneurysms had an irregular shape (
Fig. 2) and after counseling with the patient, treatment for the right MCA and left pcom unruptured aneurysms was decided. The two right MCA unruptured aneurysms had a large neck, not suitable for coil embolization, so aneurysmal neck clipping was performed (
Fig. 3). The left pcom unruptured aneurysm was decided for coil embolization. On coil embolization, selecting the aneurysm with the microcatheter (Headway microcatheter, MicroVention, Tustin, CA, USA) was difficult because there was an acute angle for entrance to the pcom aneurysm. After shaping the microcatheter into a ‘U’ shape and withdrawing the microcatheter from distal to the entrance of aneurysm, aneurysm selection was possible. An Axium (ev3, Medtronic, Irvine, CA, USA) 3D 1.5 mm/2 cm coil was employed as a framing coil, and one additional coil insertion was done (
Fig. 4A,
B). When a third coil packing was attempted, unfortunately, the microcatheter was unstable and it was dislodged from the aneurysm and a loop of a coil which was deployed inside the aneurysm, herniated to the parent artery (
Fig. 4C). The risk of coil herniation appeared to increase with additional coil packing, so further coil packing was halted. To stabilize the herniated coil loop, a Solitaire stent (ev3, Medtronic, Irvine, CA, USA) was deployed and the herniated loop of coil was stabilized to the arterial wall by the stent. The aneurysm was not completely packed, but the bleb was covered, and in the interest of risk-benefit, the procedure was stopped (
Fig. 4D,
E). Immediately after the procedure, the patient showed global aphasia and right hemiparesis. Diffusion magnetic resonance imaging (MRI) showed small, multiple scattered infarctions on the left frontal, temporal, and parietal cortex, supposedly due to microemboli during the procedure (
Fig. 5A-
C). Aspirin (100 mg) and plavix (75 mg) were given daily after procedure. Five days after the procedure, aphasia and hemiparesis improved, but the patient complained of numbness on her right hand and intermittent hemiballistic movement on the right arm and leg developed thereafter. Upon examination, there were involuntary, irregular, violent flinging movements, predominantly on her right arm than her right leg, and on the next day, involuntary movement on her leg disappeared but persisted on her arm and numbness had subsided. Follow up diffusion MRI was performed, revealing no significant change of multiple scattered infarctions which were noted on the postoperative diffusion MRI. An electroencephalogram (EEG) was negative for epileptiform discharges and the patient had no family history of movement disorder. Anticonvulsants (valproic acid) and clonazepam were given to the patient empirically, and after 15 days, hemiballism was fully recovered, and the patient was discharged home with no neurologic deficit. Valproic acid and clonazepam were given for about one month and stopped. No more episodes of hemiballism or any other neurologic deficit have occurred since.